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two integers a, b is odd and the other is even. We compute the congruence modulo 
4, finding that a 2 + 5b 2 == 1 (modulo 4). Hence p == 1 (modulo 4) in this case. If 
a 2 + 5b 2 = 2p, we compute the congruences modulo 8. Since p == 1 or 3 (modulo 
4), we know that 2p == 2 or 6 (modulo 8). Any square is congruent 0,1, or 4 (mod-
ulo 8). Hence 5b 2 == 0,5, or 4 (modulo 8), which shows that a 2 + 5b 2 can not be 
congruent to 2 (modulo 8). Thus p == 3 (modulo 4) in this case. We have therefore 
proved the following lemma: 

(12.9) Lemma. Let p be an odd prime. Assume that the congruence x 2 == -5 
(modulo p) has a solution. Then x 2 + 5y2 = p has an integer solution if p == 1 
(modulo 4), and x 2 + 5y2 = 2p has an integer solution if p == 3 (modulo 4). 

There remains finally the problem of characterizing the odd primes p such that 
the congruence x 2 == -5 has a solution modulo p. This is done by means of the 
amazing Quadratic Reciprocity Law, which asserts that x 2 == 5 (modulo p) has a so-
lution if and only if x 2 == p (modulo 5) has one! And the second congruence has a 
solution if and only if p == ± 1 (modulo 5). Combining this with the previous lemma 
and with the fact that -1 is a square modulo 5, we find: 

(12.10) Theorem. Let p be an odd prime. The equation x 2 + 5y2 = p has an in-
teger solution if and only if p == 1 (modulo 4) and p == ± 1 (modulo 5). D 

EXERCISES 

Nullum vero dubium nobis esse videtur, 
quin multa eaque egregia in hoc genere adhuc lateant 

in quibus alii vires suas exercere possint. 

Karl Friedrich Gauss 

1. Factorization of Integers and Polynomials 

1. Let a, b be positive integers whose sum is a prime p. Prove that their greatest common 
di visor is l. 

2. Define the greatest common divisor of a set of n integers, and prove its existence. 
3. Prove that if d is the greatest common divisor of a I , ... , an, then the greatest common 

divisor of al/d, ... , an/d is l. 
4. (a) Prove that if n is a positive integer which is not a square of an integer, then Vn is 

not a rational number. 
(b) Prove the analogous statement for nth roots. 

5. (a) Let a, b be integers with a *- 0, and write b = aq + r, where 0 :::; r < 1 a I. Prove 
that the two greatest common divisors (a, b) and (a, r) are equal. 

(b) Describe an algorithm, based on (a), for computing the greatest common divisor. 
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(c) Use your algorithm to compute the greatest common divisors of the following: 
(a) 1456, 235, (b) 123456789, 135792468. 

6. Compute the greatest common divisor of the following polynomials: x 3 
- 6x 2 + X + 4, 

x 5 - 6x + l. 
7. Prove that if two polynomials f, g with coefficients in a field F factor into linear factors 

in F, then their greatest common divisor is the product of their common linear factors. 
8. Factor the following polynomials into irreducible factors in IFp [x]. 

(a) x 3 + x + 1, P = 2 (b) x 2 - 3x - 3, P = 5 (c) x 2 + 1, P = 7 
9. Euclid proved that there are infinitely many prime integers in the following way: If 

PI, ... , Pk are primes, then any prime factor P of n = (PI ... Pn) + 1 must be different 
from all of the Pi. 
(a) Adapt this argument to show that for any field F there are infinitely many monic ir-

reducible polynomials in F[x]. 
(b) Explain why the argument fails for the formal power series ring F[[x]]. 

10. Partial fractions for integers: 
(a) Write the fraction r = 7/24 in the form r = a/8 + b/3. 
(b) Prove that if n = uv, where u and v are relatively prime, then every fraction r = 

min can be written in the form r = a/u + b/v. 
(c) Let n ::: nln2 ... nk be the factorization of an integer n into powers of distinct primes: 

ni = p/i. Prove that every fraction r = min can be written in the form 
r = ml/nl + ... + mk/nk. 

11. Chinese Remainder Theorem: 
(a) Let n, m be relatively prime integers, and let a, b be arbitrary integers. Prove that 

there is an integer x which solves the simultaneous congruence x :;; a (modulo m) 
and x == b (modulo n). 

(b) Determine all solutions of these two congruences. 
12. Solve the following simultaneous congruences. 

(a) x == 3 (modulo 15), x == 5 (modulo 8), x == 2 (modulo 7). 
(b) x == 13 (modulo 43), x == 7 (modulo 71). 

13. Partial fractions for polynomials: 
(a) Prove that every rational function in C(x) can be written as sum of a polynomial and 

a linear combination of functions of the form I/(x - af 
(b) Find a basis for C(x) as vector space over IC. 

*14. Let F be a subfield of C, and letf E F[x] be an irreducible polynomial. Prove thatfhas 
no multiple root in IC. 

15. Prove that the greatest common divisor of two polynomialsfand g in Q[x] is also their 
greatest common divisor in iC[x]. 

16. Let a and b be relatively prime integers. Prove that there are integers m, n such that 
am + b n == 1 (modulo ab). 

2. Unique Factorization Domains, Principalldeal Domains, 
and Euclidean Domains 

1. Prove or disprove the following. 
(a) The polynomial ring lR[x, y] in two variables is a Euclidean domain. 
(b) The ring Z[x] is a principal ideal domain. 
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2. Prove that the following rings are Euclidean domains. 
(a) .:E[?], ? = e 2-r;i/3 (b) .:E[v=2]. 
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3. Give an example showing that division with remainder need not be unique in a Euclidean 
domain. 

4. Let m, n be two integers. Prove that their greatest common divisor in .:E is the same as 
their greatest common divisor in .:E[i]. 

5. Prove that every prime element of an integral domain is irreducible. 
6. Prove Proposition (2.8), that a domain R which has existence of factorizations is a 

unique factorization domain if and only if every irreducible element is prime. 
7. Prove that in a principal ideal domain R, every pair a, b of elements, not both zero, has 

a greatest common divisor d, with these properties: 
(i) d = ar + bs, for some r, s E R; 

(ii) d divides a and b; 
(iii) if e E R divides a and b, it also divides d. 
Moreover, d is determined up to unit factor. 

8. Find the greatest common divisor of (II + 7i, 18 - i) in .:E[i]. 
9. (a) Prove that 2,3,1 ± v=5 are irreducible elements of the ring R = .:E[v=5] and 

that the units of this ring are ± 1. 
(b) Prove that existence of factorizations is true for this ring. 

10. Prove that the ring [R[[t]] of formal real power series is a unique factorization domain. 
11. (a) Prove that if R is an integral domain, then two elements a, b are associates if and 

only if they differ by a unit factor. 
*(b) Give an example showing that (a) is false when R is not an integral domain. 

12. Let R be a principal ideal domain. 
(a) Prove that there is a least common multiple [a, b] = m of two elements which are not 

both zero such that a and b divide m, and that if a, b divide an element r E R, then 
m divides r. Prove that m is unique up to unit factor. 

(b) Denote the greatest common divisor of a and b by (a, b). Prove that (a, b)[a, b] is an 
associate of ab. 

13. If a, b are integers and if a divides b in the ring of Gauss integers, then a divides b in .:E. 
14. (a) Prove that the ring R (2.4) obtained by adjoining 2k-th roots Xk of x to a polynomial 

ring is the union of the polynomial rings F[Xk]. 
(b) Prove that there is no factorization of XI into irreducible factors in R. 

15. By a refinement of a factorization a = b l ... bk we mean the expression for a obtained by 
factoring the terms bi. Let R be the ring (2.4). Prove that any two factorizations of the 
same element a E R have refinements, all of whose factors are associates. 

16. Let R be the ring F[u,v,Y,X"X2,X3, ... ]/(xIY = UV,X22 = X"X32 = X2'''')' Show that 
u, v are irreducible elements in R but that the process of factoring uv need not terminate. 

17. Prove Proposition (2.9) and Corollary (2.10). 
18. Prove Proposition (2.11). 
19. Prove that the factorizations (2.22) are prime in .:E(i]. 
20. The discussion of unique factorization involves only the multiplication law on the ring R, 

so it ought to be possible to extend the definitions. Let S be a commutative semi group , 
meaning a set with a commutative and associative law of composition and with an iden-
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tity. Suppose the Cancellation Law holds in S: If ab = ac then b = c. Make the appro-
priate definitions so as to extend Proposition (2.8) to this situation. 

*21. Given elements VI, •.• vn in l?, we can define a semigroup S as the set of all linear com-
binations of (VI, ..• , V n) with nonnegative integer coefficients, the law of composition be-
ing addition. Determine which of these semigroups has unique factorization. 

3. Gauss's Lemma 

1. Let a, b be elements of a field F, with a =f. O. Prove that a polynomialf(x) E F[x] is ir-
reducible if and only if f(ax + b) is irreducible. 

2. Let F = lC(x), and let f, g E IC[ x, y l Prove that if f and g have a common factor in 
F[y], then they also have a common factor in lC[x,y]. 

3. Letfbe an irreducible polynomial in IC[x,y], and let g be another polynomial. Prove that 
if the variety of zeros of gin 1C2 contains the variety of zeros off, thenf divides g. 

4. Prove that two integer polynomials are relatively prime in Q[xJ if and only if the ideal 
they generate in Z[ x] contains an integer. 

S. Prove Gauss's Lemma without reduction modulo p, in the following way: Let ai be the 
coefficient of lowest degree i off which is not divisible by p. So p divides av if v < i, but 
p does not divide ai. Similarly, let bj be the coefficient of lowest degree of g which is not 
divisible by p. Prove that the coefficient of h of degree i + j is not divisible by p. 

6. State and prove Gauss's Lemma for Euclidean domains. 
7. Prove that an integer polynomial is primitive if and only if it is not contained in any of 

the kernels of the maps (3.2). 

8. Prove that det[x YJ is irreducible in the polynomial ring IC[x,y,z, wl z w 
9. Prove that the kernel of the homomorphism IR sending I + v'2 is a 

principal ideal, and find a generator for this ideal. 
10. (a) Consider the map 1jJ: defined Prove that its 

kernel is a principal ideal, and that its image is the set of polynomials p(t) such that 
p'(O) =0. 

(b) Consider the map cp: defined by - t,t3 - t 2). 
Prove that ker cp is a principal ideal, and that its image is the set of polynomials p (t) 
such that p (0) = p (1). Give an intuitive explanation in terms of the geometry of the 
variety {f = O} in 1C2 • 

4. Explicit Factorization of Polynomials 

1. Prove that the following polynomials are irreducible in Q[xl 
(a) x2 + 27x + 213 (b) x 3 + 6x + 12 (c) 8x3 - 6x + 1 (d) x 3 + 6x 2 + 7 
(e) x 5 - 3x 4 + 3 

2. Factor x 5 + 5x + 5 into irreducible factors in Q[x] and in 1F2[xl 
3. Factor x 3 + x + 1 in IFp[x], when p = 2,3,5. 
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4. Factor X4 + x2 + 1 into irreducible factors in O[x]. 
S. Suppose that a polynomial of the form X4 + bx 2 + c is a product of two quadratic fac-

tors in O[ x]. What can you say about the coefficients of these factors? 
6. Prove that the following polynomials are irreducible. 

(a) x 2 + x + 1 in the field 1F2 (b) x 2 + 1 in 1F7 (c) x 3 
- 9 in h 

7. Factor the following polynomials into irreducible factors in O[ x]. 
(a) x 3 - 3x - 2 (b) x 3 - 3x + 2 (c) x 9 - 6x 6 + 9X3 - 3 

8. Let p be a prime integer. Prove that the polynomial xn - p is irreducible in O[ x]. 
9. Using reduction modulo 2 as an aid, factor the following polynomials in O[x]. 

(a) x 2 + 2345x + 125 (b) x 3 + 5x2 + lOx + 5 (c) x 3 + 2x2 + 3x + 1 
(d) X4 + 2x 3 + 2X2 + 2x + 2 (e) X4 + 2x 3 + 3x2 + 2x + 1 
(f) X4 + 2x 3 + x 2 + 2x + 1 (g) x 5 + X4 - 4x 3 + 2X2 + 4x + 1 

10. Let p be a prime integer, and let f E Z[x] be a polynomial of degree 2n + 1, say 
f(x) = a2n+IX2n+1 + ... + alX + ao. Suppose that a2n+1 '" 0 (modulo p), 
aO,al, ... ,an == 0 (modulop2), an+I, ... ,a2n == 0 (modulop), ao =1= 0 (modulop3). Prove 
that f is irreducible in O[ x]. 

11. Let p be a prime, and let A *- I be an n X n integer matrix such that AP = I but A *- I. 
Prove that n 2: p - 1. 

12. Determine the monic irreducible polynomials of degree 3 over 1F3. 
13. Determine the monic irreducible polynomials of degree 2 over IFs. 
14. Lagrange interpolation formula: 

(a) Let xo, ... , Xd be distinct complex numbers. Determine a polynomial p (x) of degree n 
which is zero at Xl , .•. , Xn and such that p (xo) = 1. 

(b) Let Xo, ... , Xd; Yo, ... , Yd be complex numbers, and suppose that the Xi are all different. 
There is a unique polynomial g (x) E IC[ x] of degree s; d, such that g (Xi) = Yi for 
each i = 0, ... , d. Prove this by determining the polynomial g explicitly in terms of 
Xi,Yi. 

*lS. Use the Lagrange interpolation formula to give a method of finding all integer polyno-
mial factors of an integer polynomial in a finite number of steps. 

16. Let f(x) = xn + an_IX n- 1 + .,. + alX + ao be a monic polynomial with integer 
coefficients, and let rEO be a rational root off(x). Prove that r is an integer. 

17. Prove that the polynomial x 2 + y2 - 1 is irreducible by the method of undetermined 
coefficients, that is, by studying the equation (ax + by + c)(a IX + b I y + c ') = 
x 2 + y2 - 1, where a,b,c,a',b',c ' are unknown. 

5. Primes in the Ring of Gauss Integers 

1. Prove that every Gauss prime divides exactly one integer prime. 
2. Factor 30 into primes in Z[i]. 
3. Factor the following into Gauss primes. 

(a) 1 - 3i (b) 10 (c) 6 + 9i 
4. Make a neat drawing showing the primes in the ring of Gauss integers in a reasonable 

size range. 
S. Let 7T be a Gauss prime. Prove that 7T and 7T are associate if and only if either 7T is asso-

ciate to an integer prime or 7T7T = 2. 
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6. Let R be the ring Z[V3]. Prove that a prime integer p is a prime element of R if and only 
if the polynomial x 2 

- 3 is irreducible in IFAx]. 
7. Describe the residue ring Z[i]/(p) in each case. 

(a) p = 2 (b) p = 1 (modulo 4) (c) p = 3 (modulo 4) 
*8. Let R = Z[(], where ( = (-I + v=3) is a complex cube root of 1. Let p be an integer 

prime '* 3. Adapt the proof of Theorem (5.1) to prove the following. 
(a) The polynomial x 2 + x + I has a root in IFp if and only if p = 1 (modulo 3). 
(b) (p) is a prime ideal of R if and only if p = -I (modulo 3). 
(c) p factors in R if and only if it can be written in the form p = a2 + ab + b2, for 

some integers a, b. 
(d) Make a drawing showing the primes of absolute value :S iO in R. 

6. Algebraic Integers 

1. Is (1 + V3) an algebraic integer? 
2. Let a be an algebraic integer whose monic irreducible polynomial over Z is 

xn + an_,nn-' + ... + a,x + ao, and let R = Z[al Prove that a is a unit in R if and 
only if ao = ±1. 

3. Let d, d' be distinct square-free integers. Prove that IIJ(Vd) and IIJ(Yd') are different 
subfields of IC. 

4. Prove that existence of factorizations is true in the ring of integers in an imaginary 
quadratic number field. 

S. Let a be the real cube root of 10, and let {3 = a + ba + ca2, with a, b, c, E IIJ. Then 
(3 is the root of a monic cubic polynomialf(x) E IIJ[xl The irreducible polynomial for a 
over IIJ is x 3 - 10, and its three roots are a, a' = (a, and a" = (2a, where 
( = e 2"';/3. The three roots of fare {3, {3' = a + b(a + c(2a2, and 
(3" = a + b(2a + c(a2, so f(x) = (x - (3)(x - {3 ')(x - (3"). 
(a) Determinefby expanding this product. The terms involving a and a 2 have to cancel 

out, so they need not be computed. 
(b) Determine which elements {3 are algebraic integers. 

6. Prove Proposition (6.17). 
7. Prove that the ring of integers in an imaginary quadratic field is a maximal subring of IC 

with the property of being a lattice in the complex plane. 
8. (a) Let S = Z[a], where a is a complex root of a monic polynomial of degree 2. Prove 

that S is a lattice in the complex plane. 
(b) Prove the converse: A subring S of IC which is a lattice has the form given in (a). 

9. Let R be the ring of integers in the field IIJ[Vd]. 
(a) Determine the elements a E R such that R = Z[a]. 
(b) Prove that if R = Z[a] and if a is a root of the polynomial x 2 + bx + cover IIJ, 

then the discriminant b 2 - 4c is D (6.18). 

7. Factorization in Imaginary Quadratic Fields 

1. Prove Proposition (7.3) by arithmetic. 
2. Prove that the elements 2,3,1 + v=5, 1 - v=5 are irreducible elements of the ring 

Z[v=5]. 
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3. Let d = - 5. Determine whether or not the lattice of integer linear combinations of the 
given vectors is an ideal. 
(a) (5, I + 8) (b) (7,1 + 8) (c) (4 - 28,2 + 28,6 + 48) 

4. Let A be an ideal of the ring of integers R in an imaginary quadratic field. Prove that 
there is a lattice basis for A one of whose elements is a positive integer. 

5. Let R = 1'[v=5l Prove that the lattice spanned by (3, I + v=5) is an ideal in R, de-
termine its nonzero element of minimal absolute value, and verify that this ideal has the 
form (7.9), Case 2. 

6. With the notation of (7.9), show that if a is an element of R such that!(a + a8) is also 
in R, then (a,! (a + a8)) is a lattice basis of an ideal. 

7. For each ring R listed below, use the method of Proposition (7.9) to describe the ideals in 
R. Make a dmwing showing the possible shapes of the lattices in each case. 
(a) R = 1'[v=3] (b) R = 1'[W + v=3)] (c) R = 1'[v=6] (d) R = 1'[v=7] 
(e) R = 1'[ (I + v=7)] (f) R = 1'[v=T6] 

8. Prove that R is not a unique factorization domain when d ;; 2 (modulo 4) and d < -2. 
9. Let d :s; -3. Prove that 2 is not a prime element in the ring 1'[vd], but that 2 is irre-

ducible in this ring. 

8. Ideal Factorization 

1. Let R = 1'[v=6l Factor the ideal (6) into prime ideals explicitly. 
2. Let 8 = v=3 and R = 1'[8]. (This is not the ring of integers in the imaginary quadmtic 

number field Q[8].) Let A be the ideal (2, I + 8). Show that AX is not a principal ideal, 
hence that the Main Lemma is not true for this ring. 

3. Let R = 1'[v=5]. Determine whether or not 11 is an irreducible element of Rand 
whether or not (II) is a prime ideal in R. 

4. Let R = 1'[v=6]. Find a lattice basis for the product ideal AB, where A = (2,8) and 
B = (3,8). 

5. Prove that A :J A' implies that AB :J A' B. 
6. Factor the principal ideal (14) into prime ideals explicitly in R = 1'[8], where 

8 = v=5. 
7. Let P be a prime ideal of an integml domain R, and assume that existence of factoriza-

tions is true in R. Prove that if a E P then some irreducible factor of a is in P. 

9. The Relation Between Prime Ideals of R and Prime 
Integers 

1. Find lattice bases for the prime divisors of 2 and 3 in the ring of integers in (a) Q[v'=14] 
and (b) Q[v=23]. 

2. Let d = -14. For each of the following primes p, determine whether or not p splits or 
ramifies in R, and if so, determine a lattice basis for a prime ideal factor of (p): 
2,3,5,7, II, 13. 

3. (a) Suppose that a prime integer p remains prime in R. Prove that R/(P) is then a field 
with p2 elements. 

(b) Prove that if p splits in R, then R/(P) is isomorphic to the product ring IFp x IFp. 
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4. Let p be a prime which splits in R, say (P) = PP, and let a E P be any element which is 
not divisible by p. Prove that P is generated as an ideal by (p, a). 

5. Prove Proposition (9.3b). 
6. If d == 2 or 3 (modulo 4), then according to Proposition (9.3a) a prime integer p remains 

prime in the ring of integers of (!l[W] if the polynomial x2 - d is irreducible modulo p. 
(a) Prove the same thing when d == I (modulo 4) and p -=I- 2. 
(b) What happens to p = 2 in this case? 

7. Assume that d == 2 or 3 (modulo 4). Prove that a prime integer p ramifies in R if and 
only if p = 2 or p divides d. 

8. State and prove an analogue of problem 7 when d is congruent I modulo 4. 
9. Let p be an integer prime which mmifies in R, and say that (p) = p2. Find an explicit 

lattice basis for P. In which cases is P a principal ideal? 
10. A prime integer might be of the form a 2 + b2d, with a, b E 71.. Discuss carefully how 

this is related to the prime factorization of (p) in R. 
*11. Prove Proposition (9.1). 

10. Ideal Classes in Imaginary Quadratic Fields 

1. Prove that the ideals A and A I are similar if and only if there is a nonzero ideal C such 
that AC and A 'C are principal ideals. 

2. The estimate of Corollary (10.12) can be improved to la 12 2!J.(L)/V3, by studying 
lattice points in a circle mther than in an arbitrary centmlly symmetric convex set. Work 
this out. 

3. Let R = 71.[15], where 15 2 = -6. 
(a) Prove that the lattices P = (2, i») and Q = (3, i») are prime ideals of R. 
(b) Factor the principal ideal (6) into prime ideals explicitly in R. 
(c) Prove that the ideal classes of P and Q are equal. 
(d) The Minkowski bound for R is 1jL] '= 3. Using this fact, determine the ideal class 

group of R. 
4. In each case, determine the ideal class group and draw the possible shapes of the lattices. 

(a) d= -10 (b) d= -13 (c) d= -14 (d) d= -15 (e) d= -17 
(f) d = -21 

5. Prove that the values of d listed in Theorem (7.7) have unique factorization. 
6. Prove Lemma (10.13). 
7. Derive Corollary (10.14) from Lemma (10.13). 
8. Verify Table (10.24). 

U. Real Quadratic Fields 

1. Let R = 71.[15], 15 = V2. Define a size function on R using the lattice embedding (11.2): 
(T (a + M) = a 2 - 2b 2. Prove that this size function makes R into a Euclidean domain. 

2. Let R be the ring of integers in a real quadratic number field, with d == 2 or 3 (mod-
ulo 4). According to (6.14), R has the form 71.[x]/(x 2 - d). We can also consider the 
ring R I = IR[ x]/ (x 2 - d), which contains R as a subring. 
(a) Show that the elements of R I are in bijective correspondence with points of 1R2 in 

such a way that the elements of R correspond to lattice points. 
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(b) Determine the group of units of R I. Show that the subset U I of R I consisting of the 
points on the two hyperbolas xy = ± 1 forms a subgroup of the group of units. 

(c) Show that the group of units U of R is a discrete subgroup of U I, and show that the 
subgroup Uo of units which are in the first quadrant is an infinite cyclic group. 

(d) What are the possible structures of the group of units U? 
3. Let Uo denote the group of units of R which are in the first quadrant in the embedding 

(11.2). Find a generator for Uo when (a) d = 3, (b) d = 5. 
4. Prove that if d is a square> 1 then the equation X Z - yZd = 1 has no solution except 

x = ±1, y = O. 
5. Draw a figure showing the hyperbolas and the units in a reasonable size range for d = 3. 

12. Some Diophantine Equations 

1. Determine the primes such that XZ + 5yZ = 2p has a solution. 
2. Express the assertion of Theorem (12.10) in terms of congruence modulo 20. 
3. Prove that if X Z == -5 (modulo p) has a solution, then there is an integer point on one of 

the two ellipses x 2 + 5yZ = p or 2X2 + 2xy + 3y2 = p. 
4. Determine the conditions on the integers a, b, c such that the linear Diophantine equation 

ax + by = c has an integer solution, and if it does have one, find all the solutions. 
5. Determine the primes p such that the equation XZ + 2yZ = p has an integer solution. 
6. Determine the primes p such that the equation XZ + xy + yZ = P has an integer solu-

tion. 
7. Prove that if the congruence x 2 == -10 (modulo p) has a solution, then the equation 

XZ + lOyZ = pZ has an integer solution. Generalize. 
S. Find all integer solutions of the equation X Z + 2 = y3. 
9. Solve the following Diophantine equations. 

(a) yZ + 10 = x 3 (b) yZ + 1 = x 3 (c) y2 + 2 = x 3 

Miscellaneous Problems 

1. Prove that there are infinitely many primes congruent 1 modulo 4. 
2. Prove that there are infinitely many primes congruent to -1 (modulo 6) by studying the 

factorization of the integer PIPZ ... pr - 1, where PI, ... , pr are the first r primes. 
3. Prove that there are infinitely many primes congruent to -1 (modulo 4). 
4. (a) Determine the prime ideals of the polynomial ring C[ x, y] in two variables. 

(b) Show that unique factorization of ideals does not hold in the ring C[x, y]. 
5. Relate proper factorizations of elements in an integral domain to proper factorizations of 

principal ideals. Using this relation, state and prove unique factorization of ideals in a 
principal ideal domain. 

6. Let R be a domain, and let I be an ideal which is a product of distinct maximal ideals in 
two ways, say I = Pl'" Pr = QI .. , Qs. Prove that the two factorizations are the same. 
except for the ordering of the terms. 

7. Let R be a ring containing 71 as a subring. Prove that if integers m, n are contained in a 
proper ideal of R, then they have a common integer factor> 1. 
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*8. (a) Let (J be an element of the group /71+. Use the Pigeonhole Principle [Appendix 
(1.6)] to prove that for every integer n there is an integer b :s; n such that 
1 b(J 1 :s; l/bn. 

(b) Show that for every real number r and every E > 0, there is a fraction min such that 
Ir - m/nl :s; E/n. 

(c) Extend this result to the complex numbers by showing that for every complex num-
ber a and every real number E > 0, there is an element of 71.(i), say f3 = (a + bi)/n 
with a, b, n E 71., such that 1 a - f31 :s; E/n. 

(d) Let E be a positive real number, and for each element f3 = (a + bi)/n of Q(i), 
a, b, n E 71., consider the disc ofradius E/n about f3. Prove that the interiors of these 
discs cover the complex plane. 

(e) Extend the method of Proposition (7.9) to prove the finiteness of the class number 
for any imaginary quadratic field. 

*9. (a) Let R be the ring of functions which are polynomials in cos t and sin t, with real 
coefficients. Prove that R = y]/(x 2 + y2 - I). 

(b) Prove that R is not a unique factorization domain. 
*(c) Prove that C[x,y]/(x2 + y2 - I) is a principal ideal domain and hence a unique 

factorization domain. 
*10. In the definition of a Euclidean domain, the size function (J" is assumed to have as range 

the set of nonnegative integers. We could generalize this by allowing the range to be 
some other ordered set. Consider the product ring R = C[ x] x C[y]. Show that we can 
define a size function R - S, where S is the ordered set 
{0,1,2,3, ... ;w,w + l,w + 2,w + 3, ... }, so that the division algorithm holds. 

*11. Let cp: C[t] be a homomorphism, defined say by 
Prove that if x (t) and y (t) are not both constant, then ker cp is a nonzero principal ideal. 


